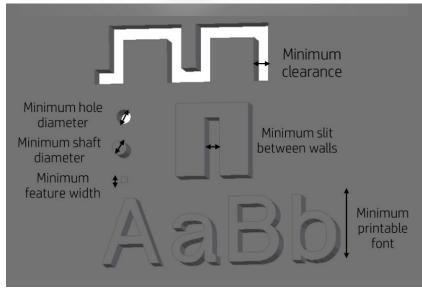


DESIGN FOR MJF PARTS



Dimensional accuracy

The dimensional accuracy that can be achieved by HP Multi Jet Fusion 3D is ± 0.2 mm up to 100 mm and 0.2% above that value, measured after sand blasting.

Printable features	Minimum values
Through hole diameter at 1mm thickness	0.5 mm
Shaft diameter at 10 mm height	0.5 mm
Printable font size	6 pt
Printable features or details	0.1 mm width
Clearance at 1 mm thickness	0.5 mm
Slit between walls / emboss	0.5 mm

During print preparation it is not necessary to add a contraction coefficient. This is compensated automatically by the printer.

Wall thickness

The minimum wall thickness depends on the orientation of the part.

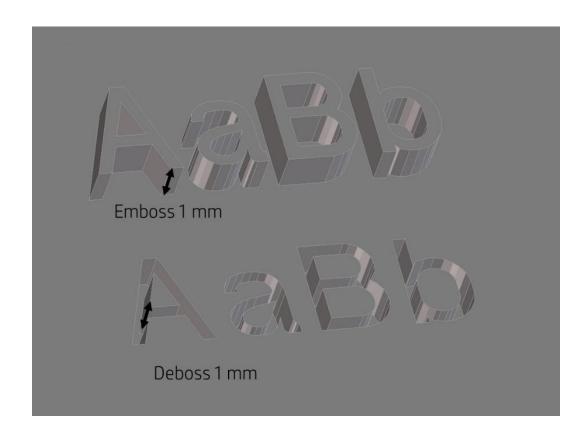
Minimum wall thickness	mm
Short walls orientated in the XY plane	0.3 mm
Short walls orientated in the Z planes	0.5 mm

However, it is recommended to **increase thickness** so that it is higher than this value or add ribs or fillets in order to reinforce the parts.

Minimum Wall thickness: 0.5 mm

Wall thickness

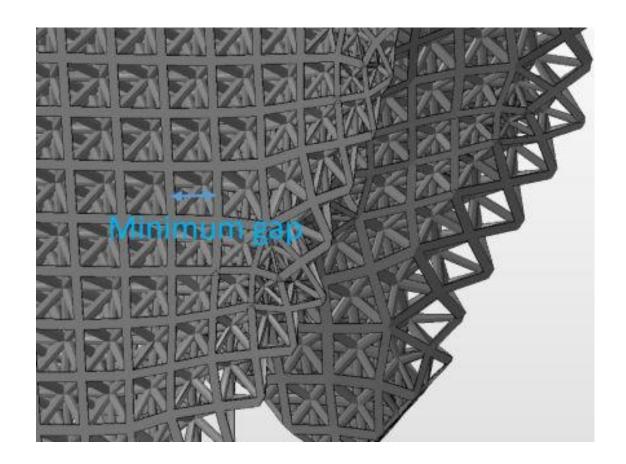
Smaller thickness can be printed but could be easily damaged:



MJF part printed at 45° with a minimum thickness of 0.08mm

Engraving

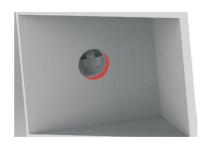
- Multi Jet Fusion technology allows for printing letters, and a number of drawings with a very high resolution and definition.
- Any text, number or drawing included in a part is recommended to have at least 1 mm of depth and to be oriented in the XY plane.
- For parts with high thickness, the depth or protrusion should be higher than 1 mm.
- Embossings → better oriented face up
- Debossings → better oriented face up

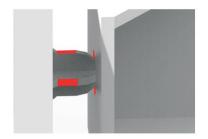


Solid part or structural fill

- Multi Jet Fusion allows you to print:
 - topology-optimized, generative designs, or
 - even small lattice structures
- These kind of designs help **reduce**:
 - the **weight** of the part and the quantity of material used.
 - the **operating cost** in applications which are very weight sensitive.
- The minimum gap recommended in a lattice structure to ensure that all the powder inside the part can be removed is 5 mm.

Make your part as hollow as possible. It saves agent and powder. Also, sink marks are reduced.

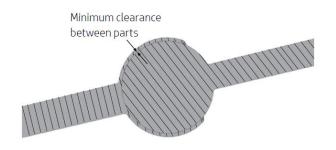




Minimum spacing

Between parts to be assembled after printing

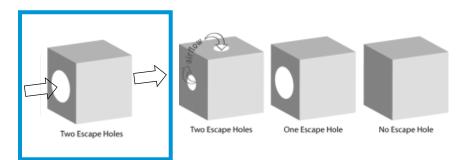
- Sometimes a pair of printed parts need to fit together due to their final application.
- In these cases, it is recommended to have **gaps of at** least 0.4 mm (+/-0.2 mm of tolerance of each part) in the interface areas that should fit together, in order to ensure correct assembly.


Between parts placed in the print chamber

- For optimal stability, it is recommended to use a distance of 3 mm between parts.
- In some cases this can be reduced to 2 mm if the parts have a low volume (~1 cm³).

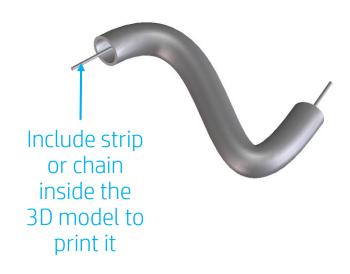
Between parts printed as assemblies

- Parts to be assembled that are printed together should have a minimum clearance between them of 0.5 mm. due to "caked" powder removal.
- Parts with very thick walls above 30 mm should have a higher gap in order to ensure proper performance.



Postprocessing considerations

Hollow closed geometries


- Multi Jet Fusion is a process where the parts are built by selectively fusing the desired areas of powder-based layers.
- If the parts that are printed are hollow, in order to remove the powder, **drain holes** need to be added to the design. The minimum recommended diameter of the holes is 5 mm.
- The recommendation is to include at least 2 holes:

Recommended: two aligned Escape Holes

Ducts

- To remove the powder from inside ducts a **chain** through the duct can be design and printed.
- When the parts are printed, the chain can be removed by **pulling it**, and it will allow the sand blaster beads to enter the duct and **remove the remaining powder**.

Assembly of big parts

- Parts **bigger** than the largest supported build size can be printed with Multi Jet fusion **by splitting** them up into different parts.
- Options available to ensure proper jointing between them:
 - Glue the parts
 - Weld the parts
 - Use mechanical joints
- Recommended geometries for gluing parts:



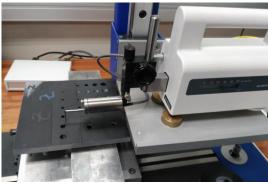
• To obtain a good outcome, the design should consider 0.1- 0.2 mm of clearance in addition to the minimum spacing (0.4 mm) recommended between parts for the gluing to maintain the dimensional properties.

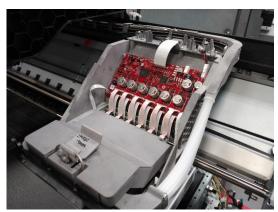
Effective building volume:

- HP Jet Fusion 3D 4200 series:
 - 380 x 284 x 380 mm (15 x 11.2 x 15 in)

Machining MJF parts

- Multi Jet Fusion parts can be machined and the parameters required are similar to other technical plastics (ABS, PA66 with GF,...).
- **Results** achieved with MJF parts:
 - ± 0.05 mm for dimensional tolerances.
 - 0.30 μm Ra in surface finishing (typical surface roughness with sand blasted MJF parts is 8 -12 μm Ra) -> It's recommended to have an overmaterial of at least, 0.5mm for face grinding.
- Recommended **tools** for machining Multi Jet Fusion parts are the same as other **technical plastics** and tools for machining **metals** like steel or aluminum may also be used.
- Small threads or fine embossing can be post machined ensuring good results.


Milling parameters:


<u> </u>				
Operation	Through holes (direct diameter)	Through holes (large diameter)	Face grinding	Turret heights
Tool recommended	Drill of required diameter	Drill of Ø12	End mill of Ø63 with interchangeable inserts	End mill of Ø8
RPM recommended	4000	10000	6000	6000
Cutting speed recommended	200 mm/min	2000 mm/min	1000 mm/min	1000 mm/min
Depth of cut recommended	1mm	1mm	0.25mm	0.25mm
Other comments		Helical interpolation		Helical interpolation

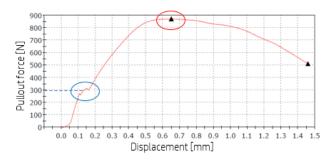
Turning parameters:

Operation	Facing	Cylindrical facing	Boring	Reaming	
Tool recommended	Cutting tool*	Cutting tool*	Drill of required diameter	Reamer of required diameter	
RPM recommended	650	650	500	150	
Cutting speed recommended	50-100 mm/min	50-100 mm/min	200 mm/min	200 mm/min	
Depth of cut recommended	0.5mm	0.5mm	NA	NA	

Printhead carriage lead time reduced from 15 to 5 days.

Threaded Inserts for MJF

- Types of threaded inserts tested:
 - Press-in inserts
 - Flanged screw to expand M4 & M6
 - Steel twist resistant Hex-Shaped M4 & M6
 - Heat staking M4 & M6
- Technical specifications:


Pullout

Torque-out

Clamp load torque Jack-out torque

Electronic torque wrench

Common plastic inserts

Screw to expand

Flanged screw to expand

Screw to expand inserts for through hole

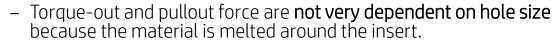
Steel twist resistant Hex-Shaped

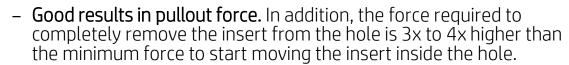
Heat staking / ultrasonic inserts

Other suitable custom designs

3x types of inserts M4 and M6

Print orientation: 0°, 45° and 90°



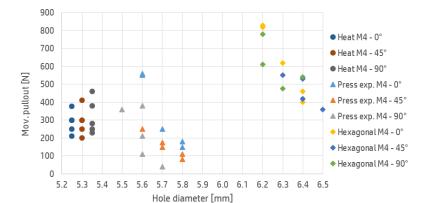


Inserts for MJF: Tests results

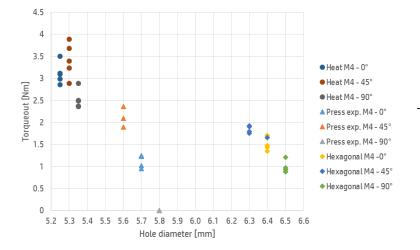
Inserts with good performance:

Heat-staking:

Very good results in torque-out tests.


Press-in hexagonal-shaped screw:

- Torque-out and pullout force are dependent on hole size.
- Very good results in pullout tests.
- The torque-out achieved is low, the use of this type of insert could be acceptable if the hole is designed in a hexagonal shape or if low torque is allowed.


Inserts with low performance:

Press-in screw-to-expand:

- Torque-out and pullout force are very dependent on hole size.
- The average torque-out and pullout forces are very low. The pullout force achieved with M6 screw sizes was lower than with M4 sizes.

Pullout M4

Torque-out M4

• 5	ummary table:		Torque-out	Pullout	Max. pullout
Туре	Insert	Metric size	Nm	N	N
1	Press-in	M4	1.08	237	283
2	Screw-to-expand	M6	1.8	109	134
3	Press-in	M4	1.44	558	822
4	Hexagonal-shaped	M6	2.81	627	1020
5	Hoot staking	M4	3.02	300	1197
6	Heat-staking	M6	8.16	374	1212

Printed Threads with MJF

- It's possible to print M8 or larger threads in 0°, 45° and 90° (smaller threads have not been tested yet). For **small threads** it's recommended to use self tapping screws, inserts or machine the thread.
- Standard thread CAD's can't be used to print MJF threads -> use LLT of ISO 965-2 or let a minimum gap in the thread of 0.2 to 0.4 mm depending on material and printmode.
- It's recommended to design tapered threads for improved tightness (sealed threads) -> investigation pending.
- If better tolerances are required it's recommended to use taps and dies as a post-processing operation.

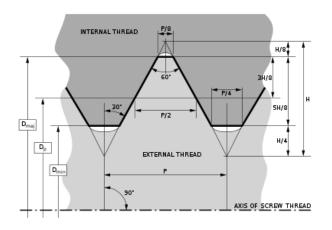
Milling parameters:

Internal threads - 6H					External threads - 6g							
			Pitch	ı ØD2	Minor ØD₁		Major Ød		Pitch Ød₂		Minor Ød₃	
Thread	Pitch	min.	min.	max.	min.	max.	max.	min.	max.	min.	max.	min.
М8	1.25	8	7.188	7.348	6.647	6.912	7.972	7.760	7.160	7.042	6.438	6.272
M10	1.5	10	9.026	9.206	8.376	8.676	9.968	9.732	8.994	8.862	8.128	7.938
M12	1.75	12	10.863	11.063	10.106	10.441	11.966	11.701	10.829	10.679	9.819	9.602
M16	2	16	14.701	14.913	13.835	14.210	15.962	15.682	14.663	14.503	13.508	13.271
M20	2.5	20	18.376	18.600	17.294	17.744	19.958	19.623	18.334	18.164	16.891	16.625

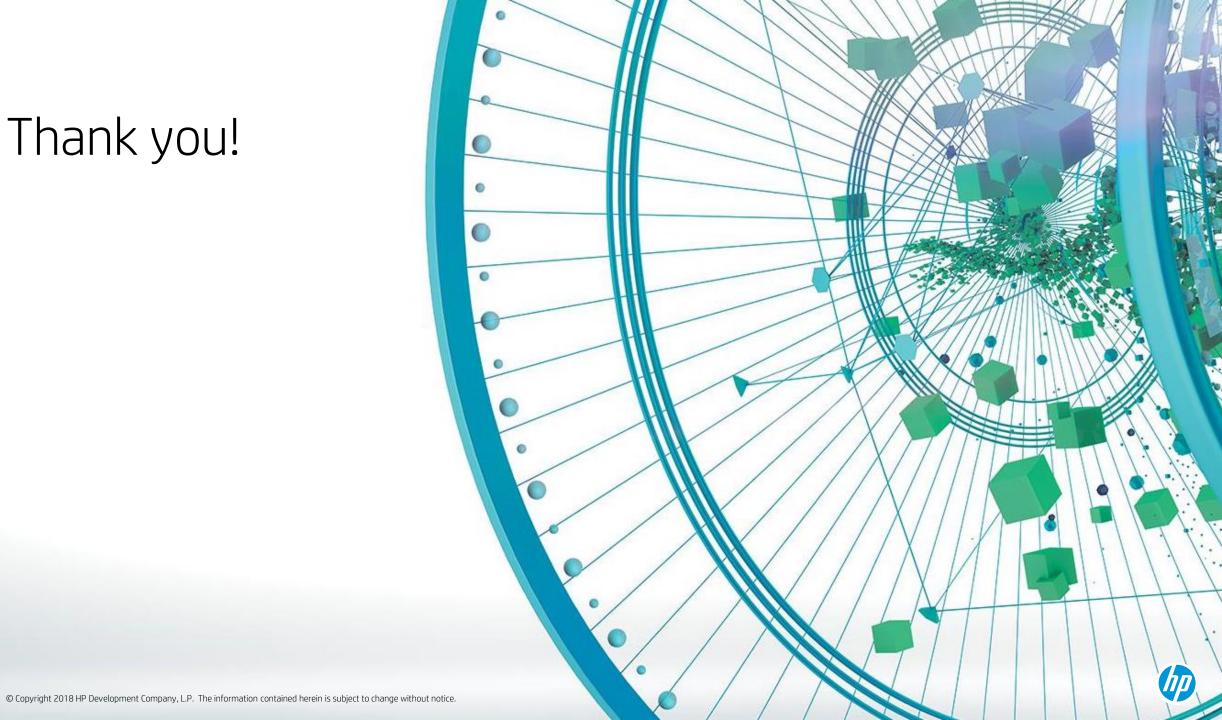
Samples tested with Go/ No go (6H/6g) gauges:

LLT + 0.10mm offset

LLT + 0.05mm offset


LLT (Lower Limit Tolerance)

LLT + 0.10mm offset


LLT + 0.05mm offset

LLT (Lower Limit Tolerance)

Thank you!

